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Introduction

Presention content

Content of the presentation: discuss

• Markov Decision Problems (MDP) and their applications in
finance,

• challenges associated with their use e.g. curse of dimensionality,

• potential solution avenues.
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Markov decision problems

Sequential decision problems

Many problems involve performing a sequence of decisions.

For instance:

Periodic rebalancing of a financial portfolio,

Identifying the shortest path for delivery of multiple goods,

Optimal replenishing of a retailer’s inventory.

Objective: optimization of the sequence of decisions.

Decisions are optimized jointly: each decision has impact on future
ones; impacts should be anticipated.
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Markov decision problems

Sequential decision problems

Sequential decision problems are mathematical tools representing such
frameworks.

Such problems involve

Set of time points T = {0, 1, . . . ,T}
Set of states S ,

Set of actions A,

Transition probabilities P between states.
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Markov decision problems

Sequential decision problems

How sequential decision problems work?

At time t = 0, . . .T − 1,

The system is in state st ∈ S at the beginning of the period,

Then an action at ∈ A is taken,

An agent receives a reward rt(st , at),

The system randomly transitions to state st+1 at time t + 1 with the
transition probability P(st+1|Ft). 1

1Ft is the information generated by previous states s0, . . . , st and actions a0, . . . , at .
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Markov decision problems

Sequential decision problems

We will consider Markov decision problems.

Particular case of sequential decision problems:

transition probabilities only depend on most recent state and action.

P(st+1|Ft) = P(st+1|st , at)

In this case, for a given policy {at}Tt=0, the state process {st}Tt=0 is a
Markov process.
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Markov decision problems

Markov decision problems

Figure : Markov decision problem
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Markov decision problems

Markov decision problems

Objective: identify policy a = {a0, . . . , aT} which optimizes the expected
total reward:

max
a0,...,aT

E

[
T∑
t=0

rt(st , at)

]

Sometimes (e.g. in finance), rewards are discounted.

More general risk measures ρ than E are sometimes consider.
I We will not consider such extensions here.
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Markov decision problems

Solving Markov decision problems

The solution approach for Markov decision problems through dynamic
programming is well known.

Define the value functions

Ψt(st) = max
at ,...,aT

E

[
T∑

u=t

ru(su, au)

∣∣∣∣st
]

as the optimal expected reward from time t on if behaving optimally
from that point.

We seek Ψ0(s0), the maximal expected total reward at t = 0.
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Markov decision problems

Solving Markov decision problems

Value functions can be calculated recursively:

Ψt(st) = max
at ,...,aT

E

[
T∑

u=t

ru(su, au)

∣∣∣∣st
]

= max
at

max
at+1,...,aT

rt(st , at) + E

[
E

[
T∑

u=t+1

ru(su, au)

∣∣∣∣st+1

] ∣∣∣∣st
]

= max
at

rt(st , at) + E

[
max

at+1,...,aT
E

[
T∑

u=t+1

ru(su, au)

∣∣∣∣st+1

] ∣∣∣∣st
]

= max
at

rt(st , at) + E
[

Ψt+1(st+1)

∣∣∣∣st]
Recall distribution of st+1 given st depends on at .

Frédéric Godin, Ph.D., FSA, ACIA Concordia - Mathematics and Statistics dept. (2018)MDP in finance Winter 2018 10 / 28



Markov decision problems

Solving Markov decision problems

Recursive solution scheme is called the Bellman Equation:

Ψt(st) = max
at

(
rt(st , at) + E

[
Ψt(st+1)

∣∣∣∣st]) .
Furthermore, define

a∗t := arg max
at

(
rt(st , at) + E

[
Ψt(st+1)

∣∣∣∣st]) .
Then, (a∗0, . . . , a

∗
T ) solves the original problem i.e.

(a∗0, . . . , a
∗
T ) = arg max

a0,...,aT
E

[
T∑
t=0

rt(st , at)

]
.
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Markov decision problems

Principle of optimality

The approach consists in decomposing a large optimization problem
into smaller subproblems more easily solvable.

This is a core idea of dynamic programing.

The fact that joining solutions of all subproblems yield a solution to
the original problem is referred to as the principle of optimality.
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Markov decision problems

Applications to finance

Some examples of Markov Decision Problems applications to finance:

Investment portfolio optimization,

Hedging,

Optimal liquidation of a portfolio.
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Markov decision problems

Investment portfolio optimization

Investment portfolio optimization problem:
Consider a market with J assets.

S
(j)
t denotes the time-t price of asset j .

R
(j)
t :=

(
S

(j)
t

S
(j)
t−1

)
− 1 is its time t return.

Defining Rt =
(

R
(1)
t , . . . ,R

(J)
t

)
, we first assume R1, . . . ,RT are i.i.d.

Asset prices S is a Markov process.
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Markov decision problems

Investment portfolio optimization

Define w
(j)
t+1 as the percentage of portfolio invested in asset j during

[t, t + 1).

The w ’s are called weights.

Weights are decided by the portfolio manager (decision variable).

Denote by Vt the time-t portfolio value evolving as

Vt+1 = Vt

1 +
J∑

j=1

w
(j)
t+1R

(j)
t+1

 .

Portfolio value Vt acts as the state of our system.

Transition probabilities characterized by distribution of Rt+1.
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Markov decision problems

Investment portfolio optimization

Reward characterized by a utility function U:

Measures satisfaction associated with a level of wealth.

Optimization problem becomes

max
w1,...,wT

E [U(VT )]

i.e. maximizing portfolio allocation at each time step to maximize
expected utility.
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Markov decision problems

Investment portfolio optimization

The state variable in this problem is the portfolio value: st = Vt .

A generalization involves including consumption from portfolio.

Each step, allocation and consumption are optimized.

Rewards include utility for consumed and terminal wealth.
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Markov decision problems

Hedging optimization

A slightly different but related problem is hedging.

A financial institution has a random liability L(ST ) it has to pay at
time T .

It attempts offsetting the liability payoff with the portfolio:

min
w1,...,wT

E [g (L(ST )− VT )]

where g penalizes hedging shortfalls.

State variables are st = (St ,Vt) i.e. the stock prices and portfolio
value.
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Markov decision problems

Optimal fund liquidation

A third financial problem being an MDP is optimal fund liquidation.

A fund manager must liquidate the assets from the fund.

He is subject to market impact; selling too many assets draws price
down and creates losses.

Waiting for too long before selling generates market risk.

Can be formulated as MDP:

Every step, need to choose the optimal amount of assets to sell.
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Markov decision problems

High dimensionality in financial problems

Previous versions of problems presented have low dimensionality:

st = Vt for investment portfolio optimization,

st = (Vt ,St) for the hedging problem.

However, to increase the model realism, several other state variables
could be included.

For instance, i.i.d. returns assumption does not hold. One could include

stochastic volatilities (one per asset),

stochastic correlations,

market regimes (Hidden Markov Models),

autocorrelation (lagged return).
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Markov decision problems

High dimensionality in financial problems

Other features could be embedded in the state space:

stochastic interest rates (e.g. factor models),

stochastic exchange rates,

transaction fees (need to include previous portfolio positions),

stochastic mortality (actuarial liabilities),

etc.

Including all these features would make st a high-dimensional state
variable.
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Markov decision problems

Lookup table solution

Bellman Equation requires solving

Ψt(st) = max
at

rt(st , at) + E
[

Ψt+1(st+1)

∣∣∣∣st] .
for all values of st and all t.

st often takes continuous values;

Can discretize possible values for st and use interpolation to
approximate Ψt between grid nodes.

Requires solving the problem (i.e. calculating Ψt(st)) for all st .

Referred to as lookup table approach.
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Markov decision problems

Approximate dynamic programming

The lookup table approach is infeasible when st is in high dimension.

If N nodes in the grid for each dimension,

st in D dimension,

⇒ ND optimization problems to solve.

Curse of dimensionality

A possibility is to use approximate dynamic programming methods.

Calculate Ψt(st) for a few values of st (e.g. randomly selected),

Use high-dimensional generalization approaches (e.g. neural
networks) to obtain estimates of Ψt(st) for other values of st .
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Markov decision problems

Approximate dynamic programming

Issues related to backward induction solution with neural network
representation:

Ψt and Ψt+1 are likely to be very similar.
I Making several times very similar calculations.

Some values of the state space are very unlikely to be reached.
I Wasting time on values unlikely to be used.
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Markov decision problems

Reinforcement learning

Reinforcement learning methods could be considered to handle these
issues.

We can include t in the state space i.e. state space is (t, st).

A single value function Ψ.

1 Start with an initial estimate of Ψ using simplistic assumptions.
2 Continuously simulate the Markov decision process, and iteratively

refine your estimate of Ψ.
I See for instance temporal difference (TD) methods.

3 While the Ψ estimate is refined, the optimal policy {at}Tt=0 also is.
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Markov decision problems

Reinforcement learning

Having a single value function avoids repeating similar calculations for
Ψt+1 and Ψt .

Simulating the Markov dynamics leads to infrequent visits of unlikely
states.

Few effort is applied in identifying optimal policies for these states.
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Markov decision problems

Conclusion

Several finance problems can be expressed as Markov decision problems.

To increase model realism, such problems involve high dimensional state
spaces.

For such high dimensional problems, typical lookup table solution of
Bellman Equation does not work.

Need to resort to approximate dynamic programming, e.g.

Neural network representation of value function,

Forward dynamic programming/reinforcement learning.
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Markov decision problems
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