Markov Decision Problems in Finance and High Dimensionality

Frédéric Godin, Ph.D., FSA, ACIA Concordia - Mathematics and Statistics dept.

Concordia University - Big Data Day

Winter 2018

Presention content

Content of the presentation: discuss

- Markov Decision Problems (MDP) and their applications in finance,
- challenges associated with their use e.g. curse of dimensionality,
- potential solution avenues.

Many problems involve performing a sequence of decisions.

For instance:

- Periodic rebalancing of a financial portfolio,
- Identifying the shortest path for delivery of multiple goods,
- Optimal replenishing of a retailer's inventory.

Objective: optimization of the sequence of decisions.

• Decisions are optimized jointly: each decision has impact on future ones; impacts should be **anticipated**.

Sequential decision problems are mathematical tools representing such frameworks.

Such problems involve

- Set of time points $\mathcal{T} = \{0, 1, \dots, T\}$
- Set of states S,
- Set of actions A,
- Transition probabilities *P* between states.

How sequential decision problems work?

At time $t = 0, \ldots T - 1$,

- The system is in state $s_t \in S$ at the beginning of the period,
- Then an **action** $a_t \in A$ is taken,
- An agent receives a **reward** $r_t(s_t, a_t)$,
- The system randomly **transitions** to state s_{t+1} at time t + 1 with the transition probability $P(s_{t+1}|\mathcal{F}_t)$.¹

 $^{-1}\mathcal{F}_t$ is the information generated by previous states s_0, \ldots, s_t and actions a_0, \ldots, a_t and a_t

Frédéric Godin, Ph.D., FSA, ACIA Concordia

MDP in finance

We will consider Markov decision problems.

Particular case of sequential decision problems:

• transition probabilities only depend on most recent state and action.

•
$$P(s_{t+1}|\mathcal{F}_t) = P(s_{t+1}|s_t, a_t)$$

In this case, for a given policy $\{a_t\}_{t=0}^T$, the state process $\{s_t\}_{t=0}^T$ is a **Markov** process.

Markov decision problems

Figure : Markov decision problem

Markov decision problems

Objective: **identify policy** $a = \{a_0, \ldots, a_T\}$ which optimizes the expected total reward:

$$\max_{a_0,\ldots,a_T} \mathbb{E}\left[\sum_{t=0}^T r_t(s_t,a_t)\right]$$

- Sometimes (e.g. in finance), rewards are discounted.
- More general risk measures ρ than $\mathbb E$ are sometimes consider.
 - We will not consider such extensions here.

Solving Markov decision problems

The **solution** approach for Markov decision problems through **dynamic programming** is well known.

Define the value functions

$$\Psi_t(s_t) = \max_{a_t, \dots, a_T} \mathbb{E}\left[\sum_{u=t}^T r_u(s_u, a_u) \middle| s_t\right]$$

as the **optimal expected reward from time** t **on** if **behaving optimally** from that point.

We seek $\Psi_0(s_0)$, the maximal expected total reward at t = 0.

Solving Markov decision problems

Value functions can be calculated recursively:

$$\begin{aligned} \Psi_t(s_t) &= \max_{a_t, \dots, a_T} \mathbb{E}\left[\sum_{u=t}^T r_u(s_u, a_u) \middle| s_t\right] \\ &= \max_{a_t} \max_{a_{t+1}, \dots, a_T} r_t(s_t, a_t) + \mathbb{E}\left[\mathbb{E}\left[\sum_{u=t+1}^T r_u(s_u, a_u) \middle| s_{t+1}\right] \middle| s_t\right] \\ &= \max_{a_t} r_t(s_t, a_t) + \mathbb{E}\left[\max_{a_{t+1}, \dots, a_T} \mathbb{E}\left[\sum_{u=t+1}^T r_u(s_u, a_u) \middle| s_{t+1}\right] \middle| s_t\right] \\ &= \max_{a_t} r_t(s_t, a_t) + \mathbb{E}\left[\Psi_{t+1}(s_{t+1}) \middle| s_t\right] \end{aligned}$$

Recall distribution of s_{t+1} given s_t depends on a_t .

Solving Markov decision problems

Recursive solution scheme is called the Bellman Equation:

$$\Psi_t(s_t) = \max_{a_t} \left(r_t(s_t, a_t) + \mathbb{E} \left[\Psi_t(s_{t+1}) \middle| s_t \right] \right).$$

Furthermore, define

$$a_t^* := rgmax_{a_t} \left(\left. r_t(s_t, a_t) + \mathbb{E}\left[\Psi_t(s_{t+1}) \middle| s_t
ight]
ight).$$

Then, (a_0^*, \ldots, a_T^*) solves the original problem i.e.

$$(a_0^*,\ldots,a_T^*) = \operatorname*{arg\,max}_{a_0,\ldots,a_T} \mathbb{E}\left[\sum_{t=0}^T r_t(s_t,a_t)\right]$$

Principle of optimality

The approach consists in **decomposing a large optimization problem into smaller subproblems** more easily solvable.

- This is a core idea of dynamic programing.
- The fact that joining solutions of all subproblems yield a solution to the original problem is referred to as the principle of optimality.

Applications to finance

Some examples of Markov Decision Problems applications to finance:

- Investment portfolio optimization,
- Hedging,
- Optimal liquidation of a portfolio.

Investment portfolio optimization problem:

Consider a market with J assets.

•
$$S_t^{(j)}$$
 denotes the time-*t* price of asset *j*.
• $R_t^{(j)} := \left(\frac{S_t^{(j)}}{S_{t-1}^{(j)}}\right) - 1$ is its time *t* return.

Defining $\mathbf{R}_t = \left(R_t^{(1)}, \dots, R_t^{(J)}\right)$, we first assume $\mathbf{R}_1, \dots, \mathbf{R}_T$ are i.i.d. • Asset prices S is a Markov process.

Define $w_{t+1}^{(j)}$ as the **percentage of portfolio invested in asset** *j* during [t, t+1).

- The *w*'s are called **weights**.
- Weights are decided by the portfolio manager (decision variable).

Denote by V_t the time-*t* **portfolio value** evolving as

$$V_{t+1} = V_t \left(1 + \sum_{j=1}^J w_{t+1}^{(j)} R_{t+1}^{(j)}
ight) \, .$$

- Portfolio value V_t acts as the **state** of our system.
- Transition probabilities characterized by distribution of \mathbf{R}_{t+1} .

Reward characterized by a **utility function** U:

• Measures satisfaction associated with a level of wealth.

Optimization problem becomes

 $\max_{\mathbf{w}_1,\ldots,\mathbf{w}_{\mathcal{T}}} \mathbb{E}\left[U(V_{\mathcal{T}})\right]$

i.e. **maximizing portfolio allocation at each time step** to maximize expected utility.

The state variable in this problem is the portfolio value: $s_t = V_t$.

- A generalization involves including consumption from portfolio.
 - Each step, allocation and consumption are optimized.
 - Rewards include utility for consumed and terminal wealth.

Hedging optimization

A slightly different but related problem is hedging.

• A financial institution has a **random liability** $L(S_T)$ it has to pay at time T.

It attempts offsetting the liability payoff with the portfolio:

$$\min_{\mathbf{w}_1,\ldots,\mathbf{w}_T} \mathbb{E}\left[g\left(L(S_T)-V_T\right)\right]$$

where g penalizes hedging shortfalls.

• State variables are $s_t = (S_t, V_t)$ i.e. the stock prices and portfolio value.

Optimal fund liquidation

A third financial problem being an MDP is optimal fund liquidation.

- A fund manager must liquidate the assets from the fund.
- He is subject to **market impact**; selling too many assets draws price down and creates losses.
- Waiting for too long before selling generates market risk.

Can be formulated as MDP:

• Every step, need to choose the optimal amount of assets to sell.

High dimensionality in financial problems

Previous versions of problems presented have low dimensionality:

- $s_t = V_t$ for investment portfolio optimization,
- $s_t = (V_t, S_t)$ for the hedging problem.

However, to **increase the model realism**, several other state variables could be included.

For instance, i.i.d. returns assumption does not hold. One could include

- stochastic volatilities (one per asset),
- stochastic correlations,
- market regimes (Hidden Markov Models),
- autocorrelation (lagged return).

High dimensionality in financial problems

Other features could be embedded in the state space:

- stochastic interest rates (e.g. factor models),
- stochastic exchange rates,
- transaction fees (need to include previous portfolio positions),
- stochastic mortality (actuarial liabilities),

• etc.

Including all these features would make s_t a high-dimensional state variable.

Lookup table solution

Bellman Equation requires solving

$$\Psi_t(s_t) = \max_{a_t} r_t(s_t, a_t) + \mathbb{E}\left[\Psi_{t+1}(s_{t+1}) \middle| s_t\right].$$

for all values of s_t and all t.

- s_t often takes continuous values;
 - Can discretize possible values for s_t and use interpolation to approximate Ψ_t between grid nodes.
 - Requires solving the problem (i.e. calculating $\Psi_t(s_t)$) for all s_t .
 - Referred to as lookup table approach.

Approximate dynamic programming

The lookup table approach is infeasible when s_t is in high dimension.

- If N nodes in the grid for each dimension,
- *s_t* in *D* dimension,
- $\Rightarrow N^D$ optimization problems to solve.
- Curse of dimensionality

A possibility is to use approximate dynamic programming methods.

- Calculate $\Psi_t(s_t)$ for a few values of s_t (e.g. randomly selected),
- Use high-dimensional generalization approaches (e.g. neural networks) to obtain estimates of Ψ_t(s_t) for other values of s_t.

Approximate dynamic programming

Issues related to backward induction solution with neural network representation:

- Ψ_t and Ψ_{t+1} are likely to be **very similar**.
 - Making several times very similar calculations.
- Some values of the state space are very unlikely to be reached.
 - Wasting time on values unlikely to be used.

Reinforcement learning

Reinforcement learning methods could be considered to handle these issues.

We can include t in the state space i.e. state space is (t, s_t) .

- A single value function Ψ .
- Start with an initial estimate of Ψ using simplistic assumptions.
- Continuously simulate the Markov decision process, and iteratively refine your estimate of Ψ.
 - See for instance temporal difference (TD) methods.
- So While the Ψ estimate is refined, the optimal policy $\{a_t\}_{t=0}^T$ also is.

Reinforcement learning

Having a single value function avoids repeating similar calculations for Ψ_{t+1} and Ψ_t .

Simulating the Markov dynamics leads to infrequent **visits of unlikely states**.

• Few effort is applied in identifying optimal policies for these states.

Conclusion

Several finance problems can be expressed as Markov decision problems.

To increase model realism, such problems involve **high dimensional state spaces**.

For such high dimensional problems, **typical lookup table solution** of Bellman Equation does not work.

Need to resort to approximate dynamic programming, e.g.

- Neural network representation of value function,
- Forward dynamic programming/reinforcement learning.

References

- Bertsekas, D. P., Tsitsiklis, J. (1992). Neuro-Dynamic Programming. *Athena Scientific*.
- François, P., Gauthier, G., Godin, F. (2014). Optimal hedging when the underlying asset follows a regime-switching Markov process. *European Journal of Operational Research*, **237**(1), 312-322.
- Godin, F. (2016). Minimizing CVaR in global dynamic hedging with transaction costs. *Quantitative Finance*, **16**(3), 461-475.
- Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of dimensionality (Vol. 703). *John Wiley & Sons*.